y 1 = 4. Titik (4,8) maka : x 2 = 4 dan. y 2 = 8. Nilai dari masing-masing x dan y dimasukkan ke dalam persamaan diatas. Sehingga menjadi : Jadi persamaan garis yang melewati titik (2,4) dan (4,8) adalah 2y - 4x = 0. Atau bisa disederhanakan lagi dengan membagi 2 semuanya, sehingga menjadi : y - 2x = 0. PersamaanGaris Lurus Pada postingan sebelumnya tentang cara menentukan gradien garis yang melalui dua titik, telah disinggung bahwa gradien garis yang melalui titik (x1, y1) dan (x2, y2) dapat dirumuskan dengan m = (y2 - y1)/ (x2 - x1). Sekarang bagaimana cara menentukan persamaan garis yang melalui dua titik (x1, y1) dan (x2, y2)? Teksvideo. jika terdapat soal seperti ini kita harus mengetahui langkah-langkah yang harus kita lakukan yang pertama adalah mencari gradien persamaan garis yang melalui dua titik dengan rumus M = Y 2 min y 1 per X2 Min X1 setelah kita mendapatkan M1 langkah selanjutnya adalah mencari M2 karena di soal diketahui sejajar maka M1 akan = M2 Jadigradien garis 2x + 3y = 1 adalah -2/3, karena sejajar maka persamaan garis yang melalui titik B (-4, 0) yakni: <=> y - yB = m (x - xB) <=> y - 0 = (-2/3). (x - (-4)) <=> y . 3 = (-2/3) (x + 4) . 3 <= dikali 3 <=> 3y = -2 (x + 4) <=> 3y = -2x - 8 c. D (-3, 1) dan sejajar garis x + 4y + 5 = 0. Ingatkembali: persamaan garis polar atau garis kutub pada lingkaran yang melalui titik adalah: Pada soal diketahui apa code. Q&A; Top Lists; Q&A; Top Lists; Tentukan persamaan garis singgung pada lingkaran di titik yang diketahui berikut (x+4)2+y2=9 (-1 0) 1 hours ago. Komentar: 0. MelaluiDua Titik Sejajar Sumbu X dan Y Saling Sejajar Saling Tegak Lurus Pada postingan ini Mafia Online akan membahas kebalikan dari yang sudah dibahas pada postingan sebelumnya yakni cara menentukan persamaan garis melalui sebuah titik (x1, y1) dengan gradien m. YALefk. PembahasanJawaban yang benar untuk pertanyaan tersebut adalah B. Ingat Gradien garis bentuk implisit A x + B y + C = 0 yaitu m = B − A ​ Syarat dua garis sejajar m 1 ​ = m 2 ​ Persamaan garis melalui titik x , y dan gradien m yaitu y − y 1 ​ = m x − x 1 ​ Akibatnya kita peroleh Gradien garis x − 3 y + 2 = 0 yaitu m 1 ​ = − 3 − 1 ​ = 3 1 ​ m 1 ​ sejajar dengan m 2 ​ , sehingga m 2 ​ = m 1 ​ = 3 1 ​ Persamaan garis melalui titik − 2 , 5 yang berarti x 1 ​ = − 2 , y 1 ​ = 5 , dan bergradien m 2 ​ = 3 1 ​ y − y 1 ​ y − 5 y − 5 y − 5 − 5 − 3 2 ​ − 3 15 ​ − 3 2 ​ − 3 17 ​ 3 − 3 17 ​ − 17 ​ = = = = = = = = = ​ m x − x 1 ​ 3 1 ​ x − − 2 3 1 ​ x + 2 3 1 ​ x + 3 2 ​ 3 1 ​ x − y 3 1 ​ x − y 3 1 ​ x − y 3 3 1 ​ x − y x − 3 y ​ Dengan demikian, persamaan garis melalui titik − 2 , 5 dan sejajar garis x − 3 y + 2 = 0 adalah x − 3 y = − 17 . Jadi, jawaban yang benar adalah yang benar untuk pertanyaan tersebut adalah B. Ingat Gradien garis bentuk implisit yaitu Syarat dua garis sejajar Persamaan garis melalui titik dan gradien yaitu Akibatnya kita peroleh Gradien garis yaitu sejajar dengan , sehingga Persamaan garis melalui titik yang berarti , dan bergradien Dengan demikian, persamaan garis melalui titik dan sejajar garis adalah . Jadi, jawaban yang benar adalah B.